Simple ways to use genetics to improve reproduction in beef cattle

David Johnston

Animal Genetics and Breeding Unit
University of New England, Armidale, Australia

Presentation to Gyranda Open Day 2016
Overview

• defining reproduction
• what is latest research
• how does days to calving work
• putting it together – practical approach
• questions

...out to the yards
Profit drivers in northern Australia

- Relative trait importance for northern beef breeding

![Bar chart showing the relative trait importance for northern beef breeding. The chart highlights Cow Weaning Rate as the most important trait with 39%, followed by Sale Liveweight Dir. (19%), Dressing % (9%), Saleable Meat % (11%), and Cow Survival Rate (15%). Other traits like Fat Depth (rump), Marbling Score, Cow Weight, Calving Ease - dir., and Calving Ease - mat. have lower importance with 0% each.]}
What is beef cattle reproduction?

complex trait, different female & males

puberty
cycling
ovulation
conception
pregnancy
calving
weaning

pubertal
semen volume
viable sperm
morphology
libido
dominance
serving ability

= net reproduction rate
Controllers of reproduction

Nutrition big factor (+ health, disease)

BUT latest research

- underlying genetic control
 - especially components (not just calf or not)

- differences between bulls in reprod. rate of daughters
- can improve weaning rate by selection
Latest research findings

1) Early in life component traits of female reproduction heritable

- **heifer**
 - *age at puberty*
 - highly heritable

- **1st calf-cow**
 - *time to re-cycle*
 - mod–highly heritable

big differences between sires daughter’s performance

- both traits highly related lifetime female reproduction
- select these 2 traits to improve lifetime performance
2) DNA adding accuracy to predictions
 – Need large reference populations

3) Male traits highly heritable (passed on!)
 – scrotal + other physical (e.g. preputial eversion)
 – BBSE measures (crush side, lab morphology)
Ovarian scanning

Corpus Luteum (CL)

First observed CL

- 2,200 cows BRAH & TCOMP
- 4-8 wks from 14 months to 9 yrs

AGE AT PUBERTY & Post calving recycle
Key FEMALE trait heritabilities

- age at puberty genetic control
- related to lifetime reproduction
Brahman sires

<table>
<thead>
<tr>
<th>Heifer Age</th>
<th>EBV (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELMONT 510/97</td>
<td>-6.1</td>
</tr>
<tr>
<td>LANCEFIELD 4999M</td>
<td>-4.9</td>
</tr>
<tr>
<td>BELMONT 268/97</td>
<td>-4.8</td>
</tr>
<tr>
<td>BELMONT 79/96</td>
<td>-4.7</td>
</tr>
<tr>
<td>LANCEFIELD DESTINY</td>
<td>-4.6</td>
</tr>
<tr>
<td>TARTRUS ABEL MANSO</td>
<td>-3.3</td>
</tr>
<tr>
<td>ALLAWAH M119</td>
<td>+2.5</td>
</tr>
<tr>
<td>ALLAWAH M90</td>
<td>+2.9</td>
</tr>
<tr>
<td>CONA CREEK EQ773</td>
<td>+4.5</td>
</tr>
<tr>
<td>ALLAWAH M137</td>
<td>+4.8</td>
</tr>
<tr>
<td>CONA CREEK 3062</td>
<td>+5.1</td>
</tr>
</tbody>
</table>

Heifer age at puberty affects EBVs (months). The impact on maiden calving rate is significant; many heifers are not pubertal at first mating.
48% wet 1st calf BRAH cows only resumed cycling after calf weaned

Calving rate: wets 41% (dries 81%)

Wet 1st calf cow resumption of cycling
Key FEMALE trait heritabilities

- re-cycling lactating cows genetic control
- highly related to lifetime reproduction
Lactation anoestrous interval EBV

CRC Brahman sires

<table>
<thead>
<tr>
<th>Sire</th>
<th>EBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANCEFIELD 4999M</td>
<td>-3.3</td>
</tr>
<tr>
<td>MR V8 797/3</td>
<td>-3.1</td>
</tr>
<tr>
<td>TARTRUS 3886</td>
<td>-2.9</td>
</tr>
<tr>
<td>CONA CREEK 2722</td>
<td>-2.3</td>
</tr>
<tr>
<td>NEWCASTLE WATERS TOBY</td>
<td>-2.1</td>
</tr>
<tr>
<td>LANCEFIELD 4461</td>
<td>-2.0</td>
</tr>
<tr>
<td>McKELLAR RICARDO</td>
<td>-1.9</td>
</tr>
<tr>
<td>TARTRUS ABEL MANSO</td>
<td>-1.8</td>
</tr>
<tr>
<td>TARTRUS 2415</td>
<td>+1.9</td>
</tr>
<tr>
<td>TARTRUS 3292</td>
<td>+2.0</td>
</tr>
<tr>
<td>JDH DENVER DE MANSO</td>
<td>+2.1</td>
</tr>
<tr>
<td>LANCEFIELD AMBITION</td>
<td>+2.1</td>
</tr>
<tr>
<td>LYNDHURST 1660/7</td>
<td>+2.4</td>
</tr>
<tr>
<td>WAVERLEY SUPREME DE MANSO</td>
<td>+2.6</td>
</tr>
<tr>
<td>TARTRUS MR MANSO 025</td>
<td>+3.8</td>
</tr>
<tr>
<td>BELMONT 79/96</td>
<td>+5.6</td>
</tr>
</tbody>
</table>

Sources:

- shorter
- longer

Notes:

- 4.4 month difference
- 1st calf daughters to resume cycling

EBV

- EBV: Expected Breeding Value
- CRC Brahman sires
- Anoestrous interval
- Lactation
- 1st calf daughters
3.7 month difference resume cycling

1st calf wet cows

40% difference in calving rate
In wet first calvers

BEL 79/96

MK3/840

DC EBV +11

DC EBV -6
How do you get more of these?

13 yr old

13 yr old

11/11

11/11
GROUP 1

3/6

RECORD

REPRODUCTION

GROUP 2

6/6
4) *Days to calving* EBV
 - extremely useful field trait (captures AP + 1st calf recycle)

5) Correlated **male** traits *(indirect selection for female)*
 - sperm morphology useful
 - SC predictive if measured early (mainly puberty)
 ** Needs to be turned into EBV **

• **New genetic project** *(includes Gyranda genetics)*
 - recording lots more female phenotypes
 - driving future DNA prediction

 ➢ increased accuracy DC EBV (young sale bulls)
Days to calving calculation

Cow A: days to calving = 285 days

Cow B: days to calving = 375 days

Cow C: days to calving = 420 days
How to collect days to calving records

- natural mating only
- repeat records (up to 6 per cow)
- records on all cows in mating group
- record culled not-pregnant
- requires accurate birth dates

- Current 30,800 records in Santa BREEDPLAN
 - raw data into an estimated breeding value (EBV)
 - more data the greater the accuracy of prediction
July 2016 Santa Gertrudis GROUP BREEDPLAN

Name/ID	Gestation Length (DAYS)	Birth WT (kg)	200 Day WT (kg)	400 Day WT (kg)	600 Day WT (kg)	Mat Cow WT (kg)	Scrotal Size (cm)	Days to Calving	Carcass Val (kg)	Eye Muscle Area (cm²)	Rib Fat (mm)	Rump Fat (mm)	Retail Yield (%)	IMF (%)	Flight Time (sec)	Domestic Index (%)	Export Index (%)			
ROSEVALE BEAUMON X334	-1.1	0.0	+1	+9	+16	+33	+4	+1.7	-21.2	+6	+0.6	+0.8	+0.8	+1.3	+0.3	+0.30	91	$+31	$+56	
STRATHMORE WARDEN (P)	55%	87%	+1	-6	+2	-17	+5	+0.3	-18.7	+5	+1.5	+1.5	0	+1.4	+1.0	$+22	97	$+20	$+39	
GYRANDA COSMIC C476	-	+0.5	91%	+8	+21	+16	+1	+1.7	-18.6	+1.8	0	+0.0	+1.4	+0.1	+1.0	+0.13	94%	$+29	$+53	
MULCHANIA E45	-	-0.5	91%	+73%	86%	+6%	-2	-0.4	-17.5	0	-3.1	+2.3	+3.1	+0.7	+0.2	-0.02	69%	$+21	$+37	
GYRANDA EXPECTATION E472	-	-0.8	91%	86%	86%	80%	50%	+3.5	-17.0	+7	+1.3	+1.1	-1.0	+1.0	+0.3	-0.06	67%	$+27	$+46	
GYRANDA S11M	-	-	-4	+1	+11	+17	-2	-0.1	-15.4	-	+1.5	+1.0	+1.2	+0.6	+0.1	-	$+18	$+39		
WAICO LANDLORD (P)	+2.9	53%	59%	91%	91%	89%	88%	+4	+19.9	+19	+3.5	-1.0	+0.5	-1.0	-0.9	-0.7	-0.17	71%	$+1	$-12
ROSEVALE AMBASSADOR A26 (P)	-	+1.1	75%	55%	55%	95%	95%	+3	+20.4	+27	0	+1.3	+1.4	+1.0	+1.0	+1.0	+26	75%	$+5	$-4
ROSEVALE ZINZAN 7B (AI)	-1.8	89%	95%	85%	85%	85%	85%	+0	+20.8	+37	+5.5	+1.7	-1.6	-1.0	-1.6	-1.0	-1.6	58%	$+26	$+13
ROSEVALE PALOROYE LAWMAN	-	+2.7	65%	84%	81%	81%	81%	-8	+20.9	+32	+6.5	-4.3	-3.3	+2.3	+0.2	-0.7	+1.0	80%	$+16	$+9
TYNDALE NODDY (AI)(P)	-1.8	50%	90%	98%	98%	98%	98%	-1	+20.9	+28	+5.5	+3.3	-0.1	+1.1	+1.0	+1.0	+1.0	58%	$+13	$-2
ROSEVALE COOLIBAH C10 (P)	-1.2	95%	98%	99%	99%	99%	99%	0	+20.9	+28	+5.5	+3.3	-0.1	+1.1	+1.0	+1.0	+1.0	90%	$+14	$-2
Breed Avg. EBVs for 2014 Born Calves	-0.4	+1.2	+10	+16	+22	+25	+0	-0.7	+10	+2.2	+0.1	-0.2	+0.7	+0.0	+0.04	+1	$+14	$-16		
How the days to calving EBV works

DC EBV = -19d

DC EBV = +17d

Predicted difference
\[\frac{1}{2}(-19 + 17) = 18d \]

Sire A daughters 18 days earlier days to calving every year compared to Sire B daughters

~ 18% higher daughter weaning rate per yr

➢ EBVs predict expected progeny differences
Days to calving EBV – proven sire

GYRANDA ALCATRAZ

- **EBV top 1% of Santa breed**
- **EBV accuracy – amt of info**: 85%
- **Breed average EBV (2014 drop)**: +0.3
- **Gyranda average EBV (2014 drop)**: -2.0
Days to calving EBV – young sale bull

GYRANDA LICORICE

EBV top 5% of Santa breed

EBV accuracy – amt of info

Breed average EBV (2014 drop)

Gyranda average EBV (2014 drop)

July 2016 Santa Gertrudis GROUP BREED PLAN

<table>
<thead>
<tr>
<th></th>
<th>Gestation Length (days)</th>
<th>Birth Wt (kg)</th>
<th>200 Day Wt (kg)</th>
<th>400 Day Wt (kg)</th>
<th>600 Day Wt (kg)</th>
<th>Mat Cow Wt (kg)</th>
<th>Milk (kg)</th>
<th>Scrotal Size (cm)</th>
<th>Days to Calving (days)</th>
<th>Carcase Wt (kg)</th>
<th>Carcase Muscle Area (sq cm)</th>
<th>Rib Fat (mm)</th>
<th>Rump Fat (mm)</th>
<th>Retail Beef Yield (%)</th>
<th>IMF (%)</th>
<th>Flight Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV</td>
<td>-</td>
<td>-</td>
<td>+12</td>
<td>+20</td>
<td>+29</td>
<td>+33</td>
<td>+5</td>
<td>-</td>
<td>-8.6</td>
<td>+2.5</td>
<td>+0.9</td>
<td>+0.5</td>
<td>+0.7</td>
<td>-</td>
<td>-0.16</td>
<td>-</td>
</tr>
<tr>
<td>Acc</td>
<td>-</td>
<td>-</td>
<td>64%</td>
<td>63%</td>
<td>66%</td>
<td>60%</td>
<td>38%</td>
<td>-</td>
<td>44%</td>
<td>-</td>
<td>49%</td>
<td>54%</td>
<td>54%</td>
<td>40%</td>
<td>-</td>
<td>64%</td>
</tr>
</tbody>
</table>

Days to Calving (days)

-8.6

44%

+0.3

-2.0
Days to calving EBV – top cow

GYRANDA 98K

Sire: GYRANDA 38G
Dam: GYRANDA K13
Breeder: GYRANDA PASTORAL CC.
Current Owner: GYRANDA PASTORAL CC.
PR Form No.: 37050
Progeny: [12 - View]
Pedigree: [View]

July 2016 Santa Gertrude 3 Group Breedplan

<table>
<thead>
<tr>
<th>Trait</th>
<th>200 Day Wt (kg)</th>
<th>400 Day Wt (kg)</th>
<th>Mat Wt (kg)</th>
<th>Scrotal Size (cm)</th>
<th>Days to Calving (days)</th>
<th>Carcass Wt (kg)</th>
<th>Eye Muscle Area (sq cm)</th>
<th>Rib Fat (mm)</th>
<th>Rump Fat (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Condition</td>
<td>-7</td>
<td>-14</td>
<td>-16</td>
<td>+4</td>
<td>-1.1</td>
<td>-22.5</td>
<td>-8</td>
<td>-0.4</td>
<td>+1.5</td>
</tr>
<tr>
<td>-10</td>
<td>-11</td>
<td>-15</td>
<td>-17</td>
<td>+5</td>
<td>-1.2</td>
<td>-23.5</td>
<td>-9</td>
<td>-0.4</td>
<td>+1.6</td>
</tr>
<tr>
<td>-10</td>
<td>-12</td>
<td>-16</td>
<td>-18</td>
<td>+6</td>
<td>-1.3</td>
<td>-24.5</td>
<td>-10</td>
<td>-0.4</td>
<td>+1.7</td>
</tr>
</tbody>
</table>

Breed Avg. EBVs for 2014 Bear Calves: Click for Percentiles

<table>
<thead>
<tr>
<th>Trait</th>
<th>200W, 500W, FAT, EMA, DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Traits</td>
<td>200W, 500W, FAT, EMA, DC</td>
</tr>
</tbody>
</table>
Days to calving EBV – bottom cow

Santa Animal Details
GYRANADA 50K

<table>
<thead>
<tr>
<th>Sire:</th>
<th>GYRANADA MAGNUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam:</td>
<td>GYRANADA QUINTET</td>
</tr>
<tr>
<td>Breeder:</td>
<td>GYRANADA PASTORAL CO.</td>
</tr>
<tr>
<td>Current Owner:</td>
<td>GYRANADA PASTORAL CO.</td>
</tr>
<tr>
<td>PR Form No.:</td>
<td>34580</td>
</tr>
<tr>
<td>Progeny:</td>
<td>[4 - View]</td>
</tr>
<tr>
<td>Pedigree:</td>
<td>[View]</td>
</tr>
</tbody>
</table>

July 2016 Santa Gertrudis GROUP BREEPLAN

<table>
<thead>
<tr>
<th>Estation Length (days)</th>
<th>Birth Wt (kg)</th>
<th>400 Wt (kg)</th>
<th>600 Wt (kg)</th>
<th>Mat Wt (kg)</th>
<th>Day Cow Wt (kg)</th>
<th>Milk (kg)</th>
<th>Scrub Size (cm)</th>
<th>Carcase Wt (kg)</th>
<th>Carcase Area (sq cm)</th>
<th>Rib Fat (mm)</th>
<th>Eye Muscle Area (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to Calving (days)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>+33</td>
<td>+1</td>
<td>+14</td>
<td>+12</td>
<td>+0.1</td>
<td>+13.1</td>
<td>+10</td>
<td>+1.6</td>
<td>-2.3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-75%</td>
<td>72%</td>
<td>76%</td>
<td>68%</td>
<td>67%</td>
<td>64%</td>
<td>65%</td>
<td>63%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Breed Avg. EBVs for 2014 Born Calves [Click for Percentiles]

-0.4 +1.2 +10 +16 +22 +25 +0 +0.7 +0.3 +10 +2.2 +0.1

Traits Observed: 200W, 600W, FAT, EMA, DC

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Stud Book No.</th>
<th>Tattoo</th>
<th>Birth Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYRANADA K90</td>
<td>Male</td>
<td>CR258701</td>
<td>K90</td>
<td>17/11/1993</td>
</tr>
<tr>
<td>GYRANADA YALE</td>
<td>Male</td>
<td>197331</td>
<td>86S</td>
<td>22/08/1995</td>
</tr>
<tr>
<td>GYRANADA 77T</td>
<td>Female</td>
<td>200010</td>
<td>77T</td>
<td>17/10/1996</td>
</tr>
<tr>
<td>GYRANADA APACHE</td>
<td>Male</td>
<td>203707</td>
<td>54X</td>
<td>14/03/1997</td>
</tr>
</tbody>
</table>
Selection can change traits

➢ selection is a key tool
NT Brahman selection experiment

EBV - days to calving (days)

SEL herd
Society Avg.

DC EBV available
NT Brahman selection experiment

On average SEL +35%

- 2004: +24%
- 2005: +36%
- 2006: +45%

Year group

Pregnancy rate

SEL
COM

NT Brahman s election experiment
1) Maiden heifers

- Manage to target into mating weight
 - avoid boxing older cows ...can’t look after
 - appropriate health etc

- Mate early & short (decide Y vs 2)
 - late calvers ...problems with re-breed

- Mate all/most & cull on preg test
 - exception if poor yearling preg rate
2) First-calf cows

- Managemost vulnerable
 - body condition coming into calving

- Control mate
 - prevent out of season if post wean cycling

- Cull all non-calvers
 - keeping multiplies problem
 - if just have to, don’t keep future replacements
3) Older cows

- Control mate (3 months)
 - Late calve usually not worth it

- Cull non-pregs
 - exception need numbers

- Cull bottle teat (bad structure)
 - reduce calf losses
 - poor weaning weight

- Monitor cow body condition
 - calving every year may run-down
 - may need to adjust bull selection
4) Buying replacement bulls

A) Physical

- adequate scrotal size (watch age and wt)
- breeding soundness exam (including morphology)
- sheath, temperament + structure
- Health vaccinations, over fed etc
- Control mate – 3 mth
 - 2-3% plenty (if BBSE tested)
 - re-test prior to mating each year
4) Buying replacement bulls

B) Genetics

➢ **Source of improvement in commercial cow herd**

• Use reproduction EBVs
 – *days to calving* essential (sets fertility of your future cow herd)
 • *scrotal size* EBV if no DC EBV
 • check dams first rebreed

• Other trait EBVs
 – growth + finish + cow size/condition + bwt (1yr mating) + more ($EBV)
 – match traits to your environment/mgt/system
 – benchmark EBVs your production system

• Need EBV, comparing bulls across groups, years, herds, ages
What is Gyranda’s role?

- lots and lots of recording
- pedigree ...DNA most accurate
- selecting (and culling) sires & dam
 - DC and PNS EBVs (improve future sons)
 - balancing growth, carcase EBVs
 - structural, type, polled, etc

- prepare bulls for sale
 - feed, BBSE, etc

- produce EBVs
 - product description (when you buy)
 - selection to continually improve (better bulls next year)
Simple “recipe” for reproduction

1) add fertile bull to well managed maiden heifers

2) ensure bull is carrying reproduction genetics + other econ traits

3) subtract failed preg

4) take care with first calvers and remate

5) again, remove non-preg

6) repeat steps 1-5 every year

7) Bake in a run of good seasons

8) Add a pinch of good luck & enjoy the fruits of your labour